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Abstract A novel blue-emitting 1,8-naphthalimide
fluorophore designed as a molecular PET-based probe for
determination of pH and detection of transition metal ions in
the environment was successfully synthesized. Novel com-
pound was configured on the “fluorophore-spacer-receptor”
format. Due to the tertiary amine receptor the novel system
showed “off-on” switching properties under the transition
from alkaline to acid media (FE=3.2) and in the presence of
Zn*" jons (FE=2.5). The results obtained illustrate the high
potential of the synthesized blue-emitting 1,8-naphthalimide
fluorophore as an efficient pH chemosensing material and a
selective probe for Zn*" ions.
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Introduction

The recognition and sensing of biologically and environmentally
important species has emerged as a significant goal in the field of
chemical sensors in recent years [1-4]. Because of the high
sensitivity, high speed and cheap instrumentation, particularly
the fluorescence sensors and switches have been actively inves-
tigated [5—7]. The photoinduced electron transfer (PET) system
using the “‘fluorophore-spacer-receptor” format is one of the
most popular approaches to the design of fluorescent sensors
and switches [8—11]. A PET based fluorescent chemosensor
involves a signal fragment (fluorophore) and a receptor, bound
through a spacer. When the receptor is unbound, the so assem-
bled molecule looses its fluorescence due to photoinduced elec-
tron transfer (PET) from receptor to the fluorophore. Upon
recognition of guest, which binds to the receptor, engaging its
lone-pair electrons, the PET process is no longer possible and the
fluorescence of the system is recovered [12, 13].

Zn*" is the second most abundant transition metal ion in the
human body after iron, and is an essential co-factor in many
biological processes such as brain function and pathology, gene
transcription [14], immune function, and mammalian reproduc-
tion [15]. This ion is also involved in pathological processes,
such as Alzheimer’s disease, epilepsy, ischemic stroke, infantile
diarrhea, apoptosis, enzyme regulation and neurotransmission
[16-18] suggests that Zn*" may be a major regulatory ion in
the metabolism of cells [19]. This has been a concern of chemists
which resulted in the emergence of considerable activities in the
development of Zn**-specific molecular probes.

Determination of pH is one of the most important analytical
methods in the chemical laboratories and in the industry. The
pH is a key parameter in clinical analysis, food production,
biotechnological processes, waste water treatment procedures,
environmental and life sciences [20]. Recent reports discussed
a relation between abnormal pH values and inappropriate cell
function observed in some common disease types such as
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cancer and Alzheimer’s [21]. Although potentiometric pH
sensor is well-established for routine pH measurements, it
possess some limitations as regarding miniaturized and dis-
posable devices, work in a strong electromagnetic field, high
throughput screening, presence of organic matter or selectivity
in high pH media [22]. Indeed in some applications pH
electrode is irreplaceable, but in a number of research and
technological tasks fluorescence probes could be an alterna-
tive to overcome the above mentioned limitations. However,
one of the major drawbacks of fluorescence probe is photo-
destruction (photo-stability) of the dye molecule, which limits
their application for continuous and long-term use.

Because of their strong fluorescence and good photostability,
the 1,8-naphthalimide derivatives have found application in a
number of areas including coloration of polymers [23-25], laser
active media [26], fluorescent markers in biology [20], antibac-
terial, antifungal [27] and anticancer agents [28], analgesics in
medicine [29], fluorescent sensors and molecular switches
[30-33], light emitting diodes [34], light-harvesting systems
[35-38], electroluminescent materials [39], liquid crystal displays
[40] and molecular logic devices [41-43]. Also 1,8-
naphthalimide fluorophores have already found application as a
signal fragment in fluorescent probes for protons [44], transition
metal cations [45] and anions [46].

This work describes the synthesis and photophysical be-
havior of a new blue-emitting 1,8-naphthalimide-based PET
probe (Scheme 1), which exhibits sensitivity and selectivity
for recognition of protons and Zn(II) ions.

Experimental
Materials

The starting 4-bromo-1,8-naphthalic anhydride 1,
ethylenediamine and methyl acrylate (Fluka, Merck) were

hv

Fluorescence

Scheme 1 Blue-emitting 1,8-naphthalimide-based PET probe 3
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used without purification. All solvents (Fluka, Merck) were
pure or of spectroscopy grade. Commercial aqueous buffer
solution HEPES (Fisher Chemical) was used. The pH values
were adjusted by addition of NaOH and HCI aqueous solu-
tion. Zn(NOj3),, Cu(NO3),, Ni(NO3),, Co(NO3),, Pb(NO3),,
Fe(NO3)3;, Hg(NOs),, and AgNO; salts were the sources for
metal cations and used as obtained from Aldrich. Double
distilled water was used in all experiments.

Methods

FT-IR spectra were recorded on a Varian Scimitar 1,000
spectrometer. The 'H NMR spectra (chemical shifts are given
as 0 in ppm) were recorded on a Bruker DRX-250 spectrom-
eter operating at 250.13 MHz. TLC was performed on silica
gel, Fluka F60 254, 20%20, 0.2 mm. The melting points were
determined by means of a Kofler melting point microscope.
The UV-vis absorption spectra were recorded on a spectro-
photometer Hewlett Packard 8452A. The fluorescence spectra
were taken on a Scinco FS-2 spectrofluorimeter. The excita-
tion source was a 150 W Xenon lamp. Excitation and emis-
sion slits width were 5 nm. Fluorescence measurement was
carried out in right angle sample geometry. All the experi-
ments were performed at room temperature (25.0 °C). A 1x
1 cm quartz cuvette was used for all spectroscopic analysis.
The fluorescence quantum yields (Qr) were measured rela-
tively to 9,10-diphenylanthracene (Qr=0.95 in ethanol) [47].
The spectral data were collected using FluoroMaster Plus 1.3
and further processed by OrginPro 6.1 software. The effect of
the metal cations and protons upon the fluorescence intensity
was examined by adding portions (1x107° mol L™") of the
metal cations stock solution to a known volume of the
fluorophore solution (4 mL). The addition was limited to
60 pL so that dilution remains insignificant.

Synthesis of the Novel Blue Emitting 1,8-naphthalimide
Sensor 3

Synthesis of 4-bromo-N-(2-aminoethyl)-1,8-naphthalimide 2

To a solution of 5.5 mL ethylenediamine (82.5 mmol) in
12.6 mL of water, a suspension of 4-bromo-1,8-naphthalic
anhydride 1 (3.47 g, 12.5 mmol) in 5 mL of water was added
portionwise at 75 °C under stirring over a period of 10 min.
The resulting suspension was kept under these conditions for
40 min than filtered off. The precipitate was collected, washed
with water and dried in vacuum. The crude solid was extracted
with boiling chloroform to give after evaporation of the sol-
vent in vacuum 2.04 g (51 %) of pure 4-bromo-N-(2-
aminoethyl)-1,8-naphthalimide 2 as pale yellow crystals
(m.p. 151-152 °C; lit. [48] 150-151 °C). FT-IR (KBr) cm
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Scheme 2 Feasible photoinduced electron transfer in the 1,8-
naphthalimide 3
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3374 (vNHp); 2920 (»CH); 1696 (*N-C= 0); 1659 ("N-
C=0). '"HNMR (CDCl;-d, 250.13 MHz) ppm: 8.66 (dd, 1H,
J=7.3 Hz, J=1.1 Hz, naphthalimide H-5); 8.57 (dd, 1H, J=
8.5 Hz, J=1.1 Hz, naphthalimide H-7); 8.40 (d, 1H, J=7.9 Hz,
naphthalimide H-3); 8.05 (d, 1H, J=7.9 Hz, naphthalimide
H-2); 7.84 (dd, 1H, J=8.5 Hz, J=7.3 Hz, naphthalimide H-6);
5.18 (brs, 2H, NH); 4.27 (t, 2H, J=6.6 Hz, NCH,CH,NH,);
3.07 (t, 2H, J=6.7 Hz, NCH,CH,NH,).

Scheme 3 Synthesis of 1,8-
naphthalimide PET-based probe 3
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Synthesis of 1,8-naphthalimide Probe 3

To a solution of methyl acrylate (5.2 mL, 60 mmol) in 30 mL
of methanol, 1.91 g of 4-bromo-N-(2-aminoethyl)-1,8-
naphthalimide 2 (6 mmol) was added. The reaction mixture
was stirred for 72 h at room temperature and the precipitate
was filtered off, washed with water and dried to give 2.54 g
(86 %) of the ester-functionalized 4-bromo-1,8-naphthalimide
3 as pale yellow solid (m.p. 90-92 °C, R,=0.56 in a solvent
system: n-hexane/acetone=1:1). FT-IR (KBr) cm': 2934
(¥CH); 1728 (vCOOCHz;); 1692 (*N-C=0); 1640 ("N-
C=0). '"HNMR (CDCl;-d, 250.13 MHz) ppm: 8.65 (dd, 1H,
J=7.4 Hz, J=1.0 Hz, naphthalimide H-5); 8.59 (dd, 1H, J=
8.5 Hz, J=1.0 Hz, naphthalimide H-7); 8.43 (d, 1H, J=7.8 Hz,
naphthalimide H-3); 8.01 (d, 1H, J=7.8 Hz, naphthalimide
H-2);7.85 (dd, 1H,,J=7.4 Hz, J=8.5 Hz, naphthalimide H-6);
4.25 (t, 2H, J=7.2 Hz, (CO),NCH,); 3.52 (s, 6H, 2x OCHj3);
2.88 (t, 4H, J=7.1 Hz, 2xCH,CH,CO); 2.78 (t, 2H, J=
7.2 Hz, NCH,CH,); 2.45 (t, 4H, J=7.1 Hz, 2xCH,CH,CO).
Elemental analysis: calculated for C,,H,3BrN,Og (MW
491.33) C 53.78, H 4.72, N 5.70 %; found C 54.14, H 4.63,
N 5.81 %.

Results and Discussion
Design and Synthesis

The 1,8-naphthalimide chromophore under study was de-
signed as a PET fluorescent probe for protons and transition
metal ions determination based on “fluorophore-spacer-
receptor” format. The 1,8-naphthalimide was chosen as a
fluorophore unit because of its desirable properties, such as
an excellent photostability, high luminescence efficiency,
large Stoke’s shift and easy modification of the molecular
structure [49-51]. It is well known that photophysical proper-
ties of the 1,8-naphthalimide derivates depend mainly on the
polarization of their chromophoric system [52, 53]. Light
absorption in this molecule generates a charge transfer inter-
action between the substituents at C-4 position and the car-
bonyl groups. A large dipole moment in the excited state gives
rise to a strong photogenerated electric field with positive
charge at the substituent in C-4 position and negative one at

O, OMe

OMe
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Table 1 Photophysical charac-

teristics of compound 3 in water/ Compound pH

Aa (nm)

Ar (nm)

e (L mol”" cm™) va—vg (cm ) Or

DMF (4:1, v/v) solution (C=
107 mol L™") at different pHs 3 8.5 342
35 344

12 100 440
13 300 411

6 500
4700

0.003
0.008

———pHS8.S
——pH35

Absorbance

T T T T T
300 350 400

Wavelength (nm)

Fig. 1 Absorption spectra of probe 3 in watet/DMF (4:1, v/v) at pH 3.5
and pH 8.5 (C=10"°mol L")

imide group (Scheme 2). Such a molecular electric field can,
depending on its sign and magnitude, inhibit or accelerate a
transiting electron in the 1,8-naphthalimide compounds [54].
Thus the bulk 1,8-naphthalimide PET systems are using
“lower” receptor moiety (receptor is directly attached to the
C-4-position) in which electron leaving the unprotonated
amine receptor across the C-4 position with its attractive
electric field.

The PET path from the “upper” receptor in N-position is
just as feasible thermodynamically but requires the electron to
enter the fluorophore across the imide moiety with its repul-
sive electric field and is observed in electron poor
unsubstituted, 4-chalogeno- and 4-alkoxy- 1,8-
naphthalimides [55, 56].

Recently we have synthesized some 1,8-naphthalimide
derivatives, containing “lower” tertiary amine receptor, for
cation recognition [57, 58]. The synthesized 1,8-
naphthalimide derivatives were prepared using accessible ma-
terials in high yields and showed high sensing activity.

Scheme 4 Photophysical
behavior of 1,8-naphthalimide 3
as a function of pH

! E No Fluorescence

Therefore it was of interest to see if analogues of the 1,8-
naphthalimide fluorophore, containing “upper” amine recep-
tor would shed further light on this issue. The 4-bromo-1,8-
naphthalimide was chosen as a fluorophore moiety in a view
of its electron deficient nature, high singlet state energy and a
weak repulsion field at the imide group. These properties are
likely to make PET process much more efficient as compared
to that in structurally similar systems involving electron-
donating group in C-4 position [59].

The synthesis of 1,8-naphthalimide sensor 3 was achieved
in two steps according Scheme 3. As shown, first 4-bromo-
1,8-naphthalic anhydride 1 was reacted with ethylenediamine
in water solution at 75 °C for 5 h to give intermediate 2. The
desired ester-terminated 1,8-naphthalimide 3 was synthesized
by initial Michael addition of 4-bromo-N-(2-aminoethyl)-1,8-
naphthalimide 2 with methyl acrylate resulting in ester 3. The
synthesized compounds were characterized and identified by
their melting points, TLC (R¢ values), elemental analysis data,
UV-vis, fluorescence, FT-IR and 'H NMR spectroscopy.

Photophysical Properties of Probe 3 as a Function of pH

The basic photophysical characteristics of the synthesized
probe 3 were recorded in water/DMF (4:1, v/v) solution (C=
107 mol L") at different pHs (Table 1). In solution com-
pound 3 shows absorption band in range 280-320 nm, which
is attributed to the typical for the 4-bromo-1,8-naphthalimides
ICT process [57]. The position of compound’s 3 absorbance
remains almost constant at different pHs since the 1,8-
naphthalimide fluorophore does not affect the ICT excited
states (Fig. 1).

The molar absorptivity (¢) of probe 3 in the longest-
wavelength band of the absorption spectra is higher than
10,000 L mol ™' cm™" (Table 1), indicating that this is a charge
transfer (CT) band, due to (7, 7t*) character of the Sy— S
transition. Also, as can be seen from the data presented in

OMe
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Fig.2 Fluorescent changes of probe 3 as a function of pH in water/DMF
(4:1,viv)

Table 1, at high pH values the molar absorptivity of 3 is lower
in comparison with the molar absorptivity at low pHs. Obvi-
ously in basic solution compound 3 forms self-aggregates due
to an intermolecular 7t—7t stacking which results in decreased
absorbance. In acidic solution, the amino group in compound
3 is protonated and the electrostatic repulsion between cation-
ic species counteracts the 7t—7t stacking action making the self-
aggregates dissociable.

In acid solution (pH=3.5) probe 3 displays blue fluores-
cence with maximum at 411 nm which is usual for the 4-
bromo-1,8-naphthalimides [60]. At alkaline conditions (pH=
8.5) the emission band of 3 is centered at 440 nm and the
Stoke’s shift increased that supports the aggregation of 3. This
bathochromic shift of fluorescence is typical for 4-bromo-1,8-
naphthalimide and indicates the formation of J aggregates
which can be explained by molecular exciton theory [60].
According to this theory, a molecule is regarded as a point
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Fig. 3 Effect of pH on the fluorescence intensity at 411 nm of probe 3
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Fig.4 Effect of the metal cations at concentration C=1x10"*mol L' on
the fluorescence of 3 (C=1x10"> mol L") in DMF solution buffered
with 1 mmol HEPES

dipole and the excitonic state of the aggregate splits into two
levels through the interaction of transition dipoles [61].

The ability of the molecules to emit the absorbed light
energy is characterized quantitatively by the fluorescence
quantum yield (Qr). The quantum yields of fluorescence were
calculated using 9,10-diphenylanthracene (Qr=0.95 in ctha-
nol) as a standard [47] according to Eq. (1), where 4,.5 S5
Nyorad Asampies Ssampies Nsample TEPresent the absorbance at the
excited wavelength, the integrated emission band area and the
solution refractive index of the standard and the sample,
respectively.

As can be seen from the data presented in Table 1, the
quantum yield of fluorescence of compound 3 in basic solu-
tion is lower in comparison with the data for acid media. This
indicates that the fluorescence of compound 3 is being
quenched by PET process from the tertiary amino group to
the fluorophore. Upon protonation the oxidation potential of
the receptor is being increased thermodynamically thus
disallowing PET process and the fluorescence of the com-
pound is recovered (Scheme 4).

Ssam le Aref ngample
QF = Qre ' < . ) < ) (1)
f S ref Asampl e n ;%ef

The effect of pH on the fluorescence intensity of probe 3
was further studied in a pH range ca. from pH 3 to pH 9,
maintained by small portions of hydrochloric acid starting
from alkaline solution of 3. Family of fluorescent spectra of
compound 3 at different pH values in water/DMF (4:1, v/v)
solution are presented in Fig. 2. As can be seen, upon acidi-
fication the emission of 3 was gradually increased. The en-
hancement of the fluorescence intensity (FE=3.2) have been
used as a qualitative parameter. The FE=//I, is the ratio
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Fig. 5 Changes of fluorescent a b
intensity of probe 3 in DMF 12000
solution buffered with 1 mmol 12000 — ~ oo 3250
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between the maximum fluorescence intensity / at pH 4 and the
minimum fluorescence intensity 7, at pH 8.

Analysis of the fluorescence changes at 411 nm (Fig. 3)
according to Eq. (2) gives the pK, value of 5.61 which
matches the typical pH values of acidic organelles (pH 4-6)
[21], indicating that the novel compounds may be suitable for
monitoring pH variations in the acidic environment in bio-
samples.

(1 Fmax_[F)

lo
& (IF_IFmin)

=pH-pK,

(2)

Influence of Metal Ions on the Fluorescence Intensity
of Probe 3

Compound 3 was designed as a PET-based fluorescent probe
for cation recognition. The signaling fluorescent properties of
the compound in the presence of transition metal ions have
been investigated by fluorescence spectroscopy in DMF

5504  R*=0.9918
- =a+bx
- I
= a=1708
< b =607
2 4500
W
o
8
E ]
=
8 3500
w2
L
o
_,’3 4
&

T T T T T ' 1
2 3 4 5 6

Concentracion of Zn”" (uM)

Fig. 6 Linear relationship between the intensity of 3 and Zn>" concen-
tration in DMF solution buffered with 1 mmol HEPES
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(Fig. 4). To maintain a constant pH of the environment, the
examined solutions were buffered by addition of 1 mmol
HEPES solution (pH=7.2). The HEPES buffer was chosen
because it ensures pH value about pH="7 where the probe 3 is
in its “off-state” and PET process is feasible. The experiments
have been performed in the presence of different metal cat-
ions: Co?*, Cu®*, F&**, Ni*', Pb*", Zn**, Hg*" and Ag". As
expected the presence of “guest” metal ions in the solution of
1,8-naphthalimide 3 was signaled by fluorescent enhancement
(FE) due to the coordination of the receptor with the cations
thus disallowing the PET quenching process. The FE=//I, is
determined as the ratio between the maximum fluorescence
intensity (/ - after metal ions addition) and the minimum
fluorescence intensity ([, - free of metal cations solution).
The value of FE depends on the nature of the metal ion.

As can be seen from Fig. 4, where the calculated FE values
in the presence of different metal cations are presented, the
examined compound exhibits sensor selectivity. In DMF solu-
tion of 1,8-naphthalimide 3, stronger fluorescence enhancement
(FE=2.5) was observed only upon addition of Zn** (Fig. 5a).

The stoichiometry of the complex between Zn>" cations
and the ligands was determined using the method of continu-
ous variations (Job’s method). Job’s plot analysis of the titra-
tions revealed a maximum at about 0.5 mol fraction, indicat-
ing 1:1 binding stoichiometry (Fig. 5b).

The limit of detection (LOD) of probe 3 was calculated to
be 2.5%x10 7 mol L ™" according to formula LOD=30/b where
o is the standard deviation and b is the slope of the calibration
plot (Fig. 6) [62].

Conclusions

A new blue-emitting molecular PET probe based on 1,8-
naphthalimide fluorophore (3) was designed and synthesized.
The photophysical behavior of the compound in water/DMF
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(4:1, v/v) solutions as a function of pH as well as in DMF
solutions in the presence of different transition metal ions was
studied. In water/DMF (4:1, v/v) solution 1,8-naphthalimide 3
enhanced its fluorescence intensity more than three times
(FE=3.2) after acidification from pH ca. 9 to 3. In buffered
with HEPES DMF solution (pH=7.2) in the presence of
representative metal cations (C02+, Ccu?', Fet, NiZ*, Pb*",
Zn**, Hg*" and Ag"), 1,8-naphthalimide 3 showed selectivity
towards Zn”" ions (FE=2.5). These effects are attributed to the
coordination of the tertiary amine receptor, which disallows
photoinduced electron transfer in the molecule. The changes
were of such magnitude that they can be considered as
representing two different “states”, where the fluorescence
emission is “switched off” in alkaline media and “switched
on” in acid environment and in the presence of Zn>" ions. The
pK, value of 5.61 which matches the typical pH values of
acidic organelles (pH 4-6) and selectivity towards Zn(II)
indicates that the novel compound may be suitable for mon-
itoring pH variations in the acidic environment in bio-samples
and for use as a molecular sensor for Zn>" ions.
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